

Silva(Retrofit

Jorners of 10th St. and 10th St. and Orange St. Wilmington, NC 28401

mington

jlpage3@ncsu.edu Prepared by: NC State University Raleigh, NC 27695-7625 Campus Box 7625 Jonathan L Page, EI (919) 515-8595

Sheet Index

Sheet 1: Cover & Sheet In

Sheet 2: **Existing Contours**

Sheet 3: Plan Sheet

Sheet 5: Sheet 4: System Profiles Section A-A

Sheet Section B-B

Sheet 7: Details

Sheet ∞ etails

North Carolina State University Biological and Agricultural Engineering

NCSU Box 7625

Raleigh, N.C. 27695

Designed By: JLP **ER/CONTACTS/SHEET** APRIL Date: L 12, 2012 INDEX Scale: NOT TO SCALE

Reviewed By: RJW

Wilmington Intersection Retrofits

Corners of 10th St. and Ann St., Wilmington, 10th and Orange

Number

SECT

North Carolina State University

Biological and Agricultural Engineering NCSU Box 7625 | Raleigh, N.C.

> SILVACELL CROSS SECTION

Reviewed By: RJW

Designed By: JLP

Date: APRIL 12,

2012

= Scale:

 $\bar{\mathcal{N}}$

Wilmington SilvaCell Retrofits

Corners 9 10th Wilmington, NC .15 and Ann St., 10th and Orange St. 28401

Page 9 Number

SECTION B-B

North Carolina State University

Biological and Agricultural Engineering NCSU Box 7625 | Raleigh, N.C. 27695

Reviewed By: RJW

APRIL

Date: 12, 2012

= Scale:

 $\bar{\mathcal{N}}$

Designed By: JLP

SILVACELL CROSS-SECTION

Wilmington SilvaCell Retrofits

Corners of 10th St. and Ann St., 10th and Orange St. Wilmington, NC 28401

Page Number 6 of 8

RUNDFF WATER WITH SEDIMENT

OVERFLOW

FILTERED WATER

CONCRETE

BLOCK

FILTER

EURB INLET

SEDIMENT

WIRE

SCREEN

 \times

 $\forall\Box\Box$

STUD

CURB

Z

PROTE

CURB

INLET

SD

13-02

North Carolina State University

Biological and Agricultural Engineering NCSU Box 7625 Raleigh, N.C.

Reviewed By: Designed By: RJW JLP

APRIL Date: , | |-201 \mathcal{N}

WILMINGTON

DETAILS

NOT Scale: TO SCALE

Wilmingto I ilvaCell Retrofits

Corners 9 l Oth Wilmin St. $\overline{\sigma}$ igton, 7 Ann ; St.; 2840 I 10th D L B Orange

Number

Media VARIES Storage ternal 8" BRICK WALLS 3/4" CEMENT PLASTER Water Zone CONFIGURATION Perforated Elevated $\begin{array}{c} \top \\ < \\ \bigcirc \end{array}$ 0.625 <u>D</u> \bigcirc derdrain VARIES VARIES Existing outlet Drainage

etall)

SILVA CEL **TECHNICAL** SHEET

DeepRoot's new Silva Cell supports traffic loads while providing uncompacted soil volumes for large tree growth and on-site stormwater management. The modular framework provides unlimited access to healthy soil — a critical component of tree growth in urban environments — allowing them to manage stormwater, reduce heat-island effect, and improve air quality.

DeckThe top member of the Silva Cell assembly.

Tab

Connector clips molded into the underside of the deck to secure the deck to the frame.

Cup

The depression molded into the underside of the deck which fits on to the post below.

Securely attaches deck to frame.

makes using increased quantities of native or specialized soils simple and easy, ensuring high quality soils and expanded rooting zones to grow vibrant, healthy trees with long life expectancies. The modular design of the Silva Cell

Steel Reinforcing Tubes
Galvanized steel tubes inserted
in the channel on the underside
of the deck increase rigidity
and loading capability.

Silva Cell systems can also easily be sized to treat the water quality volume of surrounding impermeable surfaces in a typical urban setting. For example, a 1,200 cubic foot volume (34 m³) of Silva Cells can be designed for 0% runoff from a 3,000 square foot (279 m²) Type II rain event.

agement with expanded rooting volumes for large, healthy trees, Silva Cells create an unparalleled opportunity to improve ing of our urban spaces. By combining on-site stormwater manthe environmental and aesthetic function-

MATERIAL SPECIFICATIONS

Fiberglass reinforced, chemically-coupled, impact modified polypropylene.
Galvanized steel tubes.

16"

(400 mm)

48" (200 mm)

24" (QO WW)

FRAME DIMENSIONS
Length: 48" (1200 mm)
Width: 24" (600 mm)
Height: 16" (400 mm)

SECTION "A-A"

SECTION

*B-

M.

′-10″

MIN.

GUTTER

CASTING

4'-4" MIN.

WIDE CONCRETE COPING BASIN CASTING, TO BE CLASS "A" DETAIL SEE SD 2-16

PLAN

NDT SD

 \Box

SCALE

Ŋ

-01

BASIN

DECK DIMENSIONS Length: 48" (1200 mm) Width: 24" (600 mm) Height: 2" (51.5 mm)

Post
The vertical member of the Silva
Cell frame that transfers paving
loads vertically downwards.

CAPACITY Void capacity: approximately 92% Soil capacity: approximately 10 ft³ (.28

Frame
The base member of the Silva Cell assembly, which includes posts and beams.

The horizontal bars connecting the posts to the frame.

Deep Root Partners, L.P.
530 Washington Street
San Francisco, CA 94111
Tel: 415/781-9700 Fax: 415/781-0191 www.deeproot.co
©Deep Root Partners, L.P. 08/2007

3

North Carolina State University

Biological and Agricultural Engineering NCSU Box 7625 Raleigh, N.C. 27695

CITY 9 WILMINGTON DE TAILS

Designed By: JLP R_{JW} APRIL Date: <u>,</u> 2012 Scale: NOT TO SCALE

Reviewed By:

Wilmington SilvaCell Retrofits

Corners Q 1 Oth Wilmin St. σ igton, nd Ann $\frac{Z}{\bigcirc}$ St.; 28401 1 Oth DUP PUP Orange

> Page *O O O* Number